HOMEWORK 4

NAME:

Due date: Monday

Exercises: 4, 7, (page 34) Exercises: 9, (page 40)

Exercises: 7, 9, 11, 13 (page 49)

Problem 1. Let F be a field and V be a vector space over F.

- (1) Show that the scaler product of the zero element of F with any vector in V is the zero vector.
- (2) Assume that $\dim_F V < \infty$. Let S be a finite subset which spans V, show that S contains a basis of V, namely, one can obtain a basis of V by deleting several elements from S.
- (3) Assume that $\dim_F V = n$ and $S = \{\alpha_1, \dots, \alpha_n\}$ is a set of n vectors. If S is linearly independent, show that S spans V and thus is a basis of V.
- (4) Assume that $\dim_F V = n$ and $S = \{\alpha_1, \dots, \alpha_n\}$ is a set of n vectors. If S spans V, show that S is linearly independent and thus is a basis of V.

Problem 2. Let F be a field and m, n be positive integers.

- (1) Show that $\dim_F \operatorname{Mat}_{m \times n}(F) = mn$.
- (2) For any $A \in M_{n \times n}(F)$. Show that there is an integer N such that A satisfies a nontrivial polynomial equation

$$A^{N} + c_{N-1}A^{N-1} + \dots + c_{1}A + c_{0}I_{n} = 0.$$

(Hint: Consider the set $\{I_n, A, A^2, \dots, A^N\} \subset M_{n \times n}(F)$ for a suitable integer N. Then apply Theorem 4 of page 44 and part (1).)

Problem 3. Let F be a field and let n be a positive integer. Let $V = \operatorname{Mat}_{n \times n}(F)$, which is a vector space of dimension n^2 over F by Problem 2. Let $W = \{A \in V \mid \operatorname{tr}(A) = 0\}$.

- (1) Show that W is a subspace of V;
- (2) Find a subspace U of V such that U + W = V.
- (3) Compute $\dim_F(W)$.

Problem 4. In this problem, you are assumed to know polynomials (of one variable/2-variables).

- (1) Let x(t), y(t) be quadratic polynomials with real coefficients (for example, $x(t) = t^2 + t + 1, y(t) = t^2 2t 3$). Show that there is a quadratic polynomial f(x, y) (i.e., f(x, y) is of the form $c_0 + c_1x + c_2y + c_3x^2 + c_4xy + c_5y^2$) such that f(x(t), y(t)) is identically zero.
- (2) Let $x(t) = t^2 1$, $y(t) = t^3 t$. Find a nonzero real polynomial f(x, y) such that f(x(t), y(t)) is identically zero.
- (3) Prove that every pair x(t), y(t) of real polynomials satisfies some real polynomial relation f(x,y) = 0.

(Hint: Use similar method as Problem 2).

Problem 5. Let α be a real cubic root of 2 (i.e., $\alpha = \sqrt[3]{2}$).

- (1) Show that the set $\{1, \alpha, \alpha^2\}$ are linearly independent over \mathbb{Q} , i.e., if $a, b, c \in \mathbb{Q}$ such that $a + b\alpha + c\alpha^2 = 0$, then a = b = c = 0.
- (2) Show that the set $F = \{a + b\alpha + c\alpha^2 | a, b, c \in \mathbb{Q}\}$ is a field.

(Hint for (1): Proof by contradiction. Assume that $a, b, c \in \mathbb{Z}$ such that $a + b\alpha + c\alpha^2 = 0$ and divide $x^3 - 2$ by $cx^2 + bx + a$.)

2 NAME:

Problem 6. Set $\alpha = \sqrt[3]{2}$. Let $F = \{a + b\alpha + c\alpha^2 : a, b, c \in \mathbb{Q}\}$. We know that F is a field and has dimension 3 over \mathbb{Q} from last problem. Thus F^n has dimension 3n as a \mathbb{Q} vector space. Choose an ordered basis \mathcal{B} of F^n (as a \mathbb{Q} -vector space). Compute $[v]_{\mathcal{B}}$ for $v = (v_1, \ldots, v_n) \in F^n$, where $v_i = a_i + b_i \alpha + c_i \alpha^2$.

You don't have to do the next problem.

Problem 7. Let V be a vector space over a field F. A subspace W of V is called proper if $W \neq V$. Show that if F is infinite, V is not the union of finitely many proper subspaces.

(You can find a proof from this link. Please try to fill the details of the proof. You don't have to submit a solution of this problem.)